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1. Introduction

A pull-out test for adhesion has many advantages. In its simplest

form, an inextensible rod, cord or fiber is partially embedded in a

long elastic block, and the force required to pull the rod out of the

block is measured, Figure 1. A debond propagates up the rod, starting

at its embedded end. The pull-out force is directly related to the

work of breaking the interfacial bond and the work of stretching the

block as it becomes detached. If the elastic properties of the block

are known, the fracture work per unit area of interface can be

calculated (1). Moreover, because the work of fracture is greater for

fracture surfaces of greater radius, there is a natural tendency for

the failure to remain as close to the interface as possible. Thus,

the mechanics of fracture drive the locus of failure towards the

interface, even when the bond is strong.

In practice, the pull-out force increases when the embedded length

is long, and increases continuously as the rod is pulled out, because

of friction in the already-detached portions. The additional force

can be quite large. Indeed, frictional resistance to pull-out is

auto-catalytic: the greater the frictional resistance to pull-out, the

greater the tension in the block and the greater the tendency of the

material to grip the rod by Poissonian contraction (2).

Because of this difficulty, we have carried out a study of

debonding in compression, for comparizon. in this case, the block

expands and separates from the rod in a radial direction as it

detaches from the rod and becomes compressed. Thus, the frictional
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component should vanish. A comparison of the two experiments should

therefore clarify the role of friction in pull-out mechanics.

2. Theoretical considerations

An analysis of pull-out forces has been given previously (1,2).

For growth of a debond along the rod by a distance dc, work of

detachment is required, given by

dW 1 = 2uaG a d c

where a is the rod radius. In addition, work of deformation is

imparted to the newly-debonded portion of the block, given by

dW2 = (F2/ 2AE) dc

where F is the pull-out force, A is the cross-sectional area of the

block and E is the tensile (Young) modulus of the block material,

assumed for simplicity to be linearly elastic. Work is provided to

the system by additional extension of the block, given by

dW = F e do = (F2/AE) dc

where e is the elongation of the detached portion of the block under

the pull-out force F. Conservation of energy requires that

dW = dW 1 + dW2.

Hence (1),

F2 = 4 aAEG (1)

Work of frictional sliding can be readily taken into account for

the special case of a block of circular cross-section, of radius b,

where b is not much greater than the rod radius a. These assumptions

allow us to calculate the pressure P exerted on the rod by the



tendency of the stretched block to undergo Poissonian contraction,

given by

" 22
P Ee[l - (a2./b )]/3 = F/3zb2

at a point where the tensile force in the block is F.

The corresponding frictional contribution dF to F is given by

dF = WP(2na dx) = (2,uaF/3b 2 ) dx,

assuming that the local frictional stress is proportional to the local

pressure. By integrating over the already debonded length of the

rod, denoted L, we obtain the total pull-out force as

ln (F/F0 ) = 2gaL/3b
2  (2)

where F denotes the pull-out force when L = 0, i.e., in the absence-O

of friction. F is given by Equation 1.-O

In an earlier approximate treatment of frictional contributions to

pull-out (2), the frictional stress was assumed to be constant over

the debonded portion of the rod. In the present analysis, it is

assumed to increase from the current location of the detachment front

to a maximum at the embedded end of the rod, in accord with the

increasing pressure set up by increasing tension in the block. This

is thought to be a better representation of the mechanics of pull-out,

although it still contains a number of simplifying assumptions,

notably that the frictional force at the interface acts to stretch the

block uniformly, throughout the cross-section of the block. This is

likely to be an unsatisfactory assumption for debonds of small length

and for rods of small radius relative to the block.

It is also known that the coefficient of friction of rubber is not
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strictly constant. Instead, it decreases as the pressure is

increased (3). The present treatment is thus only an approximate

guide to the effect of friction. Nevertheless, it indicates that

friction can be a major factor in pull-out experiments. Indeed, both

analyses show that the pull-out force will increase rapidly as the

length L of the debonded portion of the rod increases, relative to the

radius b of the block in which it is embedded. Moreover, the effect

of friction is multiplied by the ratio of the rod and block radii.

Thus, frictional effects will be most pronounced for a rod deeply

embedded within a block whose radius is not much greater than that of

the rod.

In compression, on the other hand, no frictional effects are

expected, because the detached portion of the block will bulge

outwards, away from the rod. An experimental comparison of the two

processes is made below.

2. Experimental details

Preparation of samples

Steel rods of various radii, ranging from 0.25 to 1.65 mm were

cleaned with acetone and painted with thin coats of two

rubber-to-metal bonding agents (Chemlok 205 and Chemlok 220, Lord

Corporation). They were then placed along the central axis of a mold

having a cavity of square cross-section, 12.7 x 12.7 mm, and 76 mm

long. A rubber block was then molded around the rod, forming a bond

with the steel during vulcanization. The mix formulation used to
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prepare the blocks consisted of: natural rubber, 100 parts by weight,

and dicumyl peroxide, 2 parts by weight. Vulcanization was effected

by heating for 50 min at 150 0 C. Young's modulus was determined from

simple tension measurements to be 1.05 MPa.

Blocks were prepared of various lengths, from 6.5 to 75 mm.

Similar blocks were prepared with a central hole in place of the

bonded steel rod, the hole being slightly larger in diameter than the

rod. Two blocks were placed in series as shown in Figure 2, so that

on compression the rod emerged from the upper block and entered the

hole in the lower block. To avoid buckling instabilities under

compressive loads it was found to be necessary to employ short lower

blocks (which are not reinforced by a central steel rod) when the

upper block was long, and short upper blocks for rods of small

diameter (which do not reinforce effectively against buckling).

Unfortunately, the elastic behavior of short blocks in compression

is not well described by linear elastic relations, with Young's

modulus E, because of severe and increasing constraints against

lateral expansion. Furthermore, these constraints are not well

defined in compression against frictional surfaces, as in the present

experiments. Estimates of the effective modulus of compression

specimens, for use in Equation 1, were obtained from the initial

slopes of experimental relations between compression force and

deflection, but they must be regarded as rather approximate measures.

Blocks of larger cross-section were obtained by glueing a number of

blocks together, side by side, with a rubbery adhesive (Pliobond, The
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Goodyear Tire & Rubber Company). In these cases, the central block of

the upper assembly contained the steel rod.

All experiments were carried out at room temperature, using a

cross-head speed of 5 mm/min.

Determination of debonding force

In pull-out experiments the force rose continuously with

increasing extension of the sample to reach a well-defined maximum

value, taken as the pull-out force F. A representative relation

between tensile force and deflection is shown in Figure 3.

Irregularities in the curve zuggest that debonding began at a

relatively low force, about 40 N, but the force F required to pull the

rod out completely was considerably greater, about 75 N. This

difference is attributed to friction.

Two methods were used to determine the debonding force in

compression experiments:

(i) In the first, the sample was compressed and the force-deflection

relation studied. A typical result is shown in Figure 4. The force

rose sharply in the initial stages, as the lower block was

increasingly compressed, and then abruptly fell when debonding started

at the lower end of the rod. Both the peak value, about 55 N, and the

subsequent minimum value, about 40 N, have been employed as measures

of failure force.

As debonding continued the force fluctuated about a gradually

rising average value and eventually rose again when most of the rod

had become detached. Using polarized light, progress of the debond



could be observed by corresponding movement of the photoelastic stress

pattern along the rod, Figure 5. It was found to propagate at

substantially constant force over most of the rod length, but the

upper end of the rod stayed bonded even when large compressive forces

were imposed.

(ii) The amount of energy lost in a loading and unloading cycle was

determined from the area between loading and unloading

force-deflection relations. Expressed as a fraction of the energy put

in, given by the area under the loading curve, it is denoted the

mechanical hysteresis ratio h. Values of h were determined for

increasing levels of applied force. Up to the point at which sliding

began between the rubber and rod surfaces, h was relatively small,

about 10 percent, and constant, but a marked increase was evident when

sliding started. This feature was also used to recognize the onset of

debonding.

Typical relations between h and the maximum applied compressive

force are shown in Figure 6 for strongly-bonoed and weakly-bonded

rods. The onset of debonding is clear, at forces of about 35 N and

about 7 N, respectively. Values of push-out force determined in this

way were found to be similar to those determined directly from the

loading curves, lying between the initial peak force and the

subsequent minimum value.

3. Experimental results and discussion

Measurements were made of pull-out and push-out forces for bonded
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steel rods having a wide range of diameter d, embedded in rubber

blocks having a wide range of cross-sectional area A. The results are

plotted in Figures 7 and 8 in accordance with Equation 1, i.e., as a

function of d1 / 2 for blocks of constant cross-sectional area, and as a

function of A1/ 2 for rods of constant diameter. The theoretical

treatment, ignoring friction, predicts linear relations between

failure force F and d 2 and between F and AI 2

Push-out measurements were in reasonable agreement with these

predictions, values for both peak force and minimum force falling on

linear relations passing through the origin. Pull-out forces were

similar in magnitude for rods of the smallest diameter, but became

considerably higher as the rod diameter increased, and deviated

significantly from a linear relation through the origin, Figure 7.

These discrepancies are attributed to frictional contributions to the

pull-out force, which are expected to increase with increasing rod

diameter, Equation 2.

It should be noted that non-linear elastic behavior of rubber

would cause the opposite effect. A higher effective modulus of

elasticity in compression would lead to higher push-out forces, rather

than lower ones, Equation 1. Thus, the effect of increased stiffness

in compression seems to be rather small in the present experiments; it

is certainly not responsible for the lower failure forces.

As expected, pull-out forces were higher than push-out forces for

rods of constant diameter embedded in blocks of different

cross-sectional area, Figure 8. The relative difference became
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smaller, however, for blocks of greater cross-section. This is also

consistent with a frictional contribution to the pull-out force, which

would become less significant in blocks of large cross-section A

[ b _ 2 -a21 in Equa-on 2]. For blocks of the Largest cross-sections

there were indications of departures from a linear dependence of the

failure force upon A/2, both for pull-out and push-out experiments,

Figure 8. When the block cross-section is large in comparison with

the rod radius a, then the assumption of uniform extension or

compression of the debonded portion of the block is probably

unsatisfactory.

4. Conclusions

A study has been carried out of adhesive failure forces for a steel

rod embedded in, and bonded to, a rubber block. Emphasis has been

placed on comparing tension (pull-out) and compression (push-out)

forces. A frictional contribution to the pull-out force appeared to

be significant for rods having a diameter greater than about 0. mm

in the present experiments. Indeed, it became a large fraction of the

total force when the rod diameter was 1 mm or more. On the other

hand, it was negligibly small in push-out experiments. They would

therefore be preferred on this basis for measuring the strength of

adhesion. But experimental difficulties in carrying out compression

tests are considerable. Tall blocks become unstable under large

compressive loads and short ones are markedly stiffer than long ones

due to restraints on their lateral expansion which are difficult to
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specify and control. Thus, although measurements of push-out force

for a wide variety of samples have been shown to be in good accord

with a simple theoretical treatment of debonding, ignoring friction,

it is recommended that pull-out tests be retained for assessing the

strength of adhesive bonds.

Caution is necessary to minimize the effect of friction. The

theoretical treatment indicates that the product aL of the rod radius

a and the embedded length L should be held smaller than the

cross-sectional area of the block in which the rod is embedded.
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Figure Legends

Figure 1. Pull-out test for adhesion between rubber and steel.

Figure 2. Push-out test for adhesion.

Figure 3. Typical relation between tensile force F and deflection of

the testpiece ends for pull-out, Figure 1. Rod diameter: 1.4 mm.

Figure 4. Typical relation between compressive force F and

deflection of the testpiece ends for push-out, Figure 2.

Rod diameter: 2.5 mm.

Figure 5. Photoelastic stress patterns during push-out, showing

progress of debonding. Compressive force: a, 0 N; b, 17 N;

c, 53 N; d, 40 N; e, 45 N; f, 59 N. Rod diameter, 1.9 mm;

block length, 50 mm (top), 6.4 mm (bottom).

Figure 6. Experimental relations between hysteresis ratio h and

maximum compressive force F for push-out of a weakly-bonded (0)

and a strongly-bonded (0) rod, of diameter 1.6 mm. Sample with

no rod: A. Block length: 25mm (top); 25 mm (bottom);

cross-sectional area, 12.7 mm x 12.7 mm.

Figure 7. Experimental relations between failure force F and

diameter d of a steel rod, embedded in a rubber block of

cross-section 12.7 mm x 12.7 mm. Pull-out force, A.

Push-out forces: maximum values, 0; minimum values,O

Figure 8. Experimental relations between failure force F and

cross-sectional area A of the block in which the steel rod was

embedded. Rod diameter, 2.5 mm. Pull-out forces, A; push-out

forces, 0.
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